

Overview of Poster Session D

Tony F. Heinz Department of Physics Columbia University New York, NY USA

tony.heinz@columbia.edu

http://heinz.phys.columbia.edu

My Concept of Overview

Short clear description of each poster and its relation to the others

NT Conference Charter (§4.3) "2 minutes/2 viewgraph summary"

My Concept of Overview

Poster Session D: Topics Listed

- Raman Characterization of Nanotubes
- Other Characterization of Nanotubes
- Atomic Structure of Carbon Nanotubes
- General Studies of Carbon Nanostructures
- Non-Carbon Nanotubes

72 Posters – § 4.4 of NT Charter

Overview

- Non-Carbon Nanotubes (10)
- Characterization of Nanotubes
 - Raman (20)
 - Other Characterization (13)
- Defects in Carbon Nanotubes (11)
- General Studies of Carbon Nanostructures (17)

Non-Carbon Nanostructures: Nanotubes and Nanowires

<u>Nitrides</u> BN BCN <u>Oxides</u> Al_xO_y ZnO SiO_x Noncentrosymmetric: Piezoelectricity Linear EO effect Large band gap

BN and BCN Nanotubes

- D36 Nunes et al. (T)
- D38 Huang et al. (E)
- D39 Lourie (E)
- D40 Yap et al. (E)

- Electronic structure and stability BCN nanostructures
- Chemical peeling, branching of BN nanotubes in DMSO
- Refractive properties of BN nanotubes in high E fields
- Low-temperature growth of BN nanotubes

E = Experiment T = Theory

D-40: Low Temperature Growth of Pure Boron Nitride Nanotubes at 600 °C (Yap et al.)

<u>30 μm</u>

RF plasma-enhanced laser deposition process

Phase-selective growth

Impurity free

Vertically aligned at desired locations

Oxide Nanostructures

Electronic, optoelectronic prop., catalysis, ...

- D41 Yap et al. (E)
- D42 Seifert et al. (T)
- D44 Chang et al. (T)
- D45 Uchino et al. (E)

- Direct growth of ZnO nanotubes w/o catalysts
- Structure and properties of Al oxide based nanotubes
- Structure and properties of aluminate tubes and bundles
- Growth of SiO_x on Ge nanodots

Novel Nanostructures

• D37 Kurita et al. (T)

• Energetics of ordered ice in CNTs

Unique environment to study water-water interactions

D68 Seifert et al. (T)

• Properties of diamondbased nanowires by DFTB

<u>Comparison of:</u> Nanowires (diamond sp³ carbon, not layer forming) Nanotubes (graphitic sp² carbon, layer forming)

Characterization Posters

Raman characterization

Other characterization approaches

Raman Characterization of CNTs

- Non-contact method suitable for various environmental conditions
- Suitable for ensembles, but can work at single nanotube level

Complements fluorescence and Rayleigh (elastic) scattering

- Provides information on phonon structure:
 - Nanotube diameter through radial breathing mode (RBM)
 - Defects through D mode
 - Metallic/semiconducting character through Raman lineshapes
 - Nanotube alignment through polarization dependence
- Provides information on electronic structure (Jorio talk earlier today):
 - Raman excitation spectroscopy (for both M/S nanotubes)

Raman Characterization of Carbon Nanostructures

<u>Understanding features of Raman spectroscopy</u>

- Vibrational frequencies and response to temperature, strain, ...
- Electron/phonon coupling and transition strengths
- Electronic level structure (Raman excitation spectroscopy)

in various structures: SWCNT, DWCNT, graphene, nanographite, ...

Applications of Raman spectroscopy to diverse problems

Raman Spectroscopy (I)

- D01 Sauvajol et al. (E)
- D57 Poncharal et al. (E)
- D06 Saito et al. (T) (also oral paper)
- D08 Sato et al. (T)
- D09 Lin et al. (E)
- D10 Ferrari et al. (E) (also oral paper)
- D11 Telg et al. (E)

- Raman spectra of (n,m) identified individual SWCNTs
- Study of individual (n,m) labelled SWCNT
- Chirality, energy dependence of 1st and 2nd order res. Raman
- Two-phonon Raman intensity of SWCNTs and graphite
- Temperature-dep. Raman of suspended SWCNTs
- The Raman fingerprint of graphene
- First optical transition in CNTs: resonant Raman study

Raman Spectroscopy Combine Raman with HRTEM D01 Sauvajol et al. (E) and D57 Poncharal et al. (E)

20um

Raman Spectroscopy (II)

- D13 Araujo et al. (E)
- D16 Cardenas et al. (E)
- D17 Ferrari et al. (T)
- D59 Niwase (E)
- D61 Cacado et al. (E) (also oral)
- D04 Haroz et al. (E)

- Anomalous scaling and a new ratio problem in SWCNTs
- Dispersive Raman features of solubilised SWCNTs
- Non-adiabatic effects in Raman spectra of nanotubes
- Vacancy concentration & Raman intensity in graphite
- Raman spectroscopy in nanographite
- Real-time observation of lattice vibrations in SWCTS

Raman Spectroscopy New approach to Raman spectroscopy with impulsive excitation by fs laser

D04 Haroz et al.

Raman Applications

- D02 Miyazawa et al. (E)
- D03 Kawamoto et al. (E)
- D05 Uchida et al. (E)
- D07 Kobayashi et al. (E)
- D12 J. Kim et al. (E)
- D14 Y. Kim et al. (E)
- D15 Seong et al. (E)

- Raman analysis of fullerene nanotubes and nanowiskers
- Relative humidity sensitivity of DNA-SWCNT hybrids
- Raman study of laser-induced defects in SWCNTs
- Environmental eff. In PL/Raman from suspended SWCNTs
- Raman study of poly(3methylthiophene) nanotubes
- Raman study of Li insertion into DWCNT Bucky paper
- Raman of SWCNTs on patterned substrates

Characterization

• √ <u>Raman characterization</u>

Other characterization approaches
 STM
 HRTEM
 XPS/UPS
 EELS
 RF/microwave
 Fluorescent marker

[Also important, but not featured in these posters: IR, UV-vis, photoluminescence, ...]

Other Characterization: <u>HRTEM</u>

Advances in real space and diffractive imaging of nanotubes and metallic inclusions. Oral presentations by Nakayama, Suenaga

- D19 Jiang et al. (T)
- D20 Jiang et al. (T)
- D21 Houlle et al. (E)
- D33 Hirahara et al. (E)
- D46 Higashi et al. (E)

- Advances in analysis of TEM diffraction data for SWCNT
- Robust Bessel-function method for (n,m) determination
- 3D TEM observation of metallic nanopartices in CNTs
- Direct observation of sixmembered rings by HRTEM
- In-situ monitoring of Fe nanoparticles in a-*c* walls

Other Characterization: <u>STM</u>

Real-space analysis of structure with electronic spectroscopy by STS at single tube level

- D24 Clair et al. (E)
- D48 Fukui et al. (E)
- Low-T STM of SWCNTs on metal surfaces
- Direct observation of superstructure of DWCNTs by STM

Electronic interactions:

- Nanotube substrate
- Nanotube/nanotube

Other Characterization: <u>RF/Microwave</u>

High-frequency response Non-contact electrical measurements

- D18 Zhao et al. (E)
- D71 Eriksson et al. (E)
- Complex permittivity of MWNTs filled with metallic Ag
- High-frequency properties of CNTS NEMS

Opportunities in Characterization

(1) Extensive combination of different methodologies

D34 Arepalli et al. (E)
 •Carbon nanotube material quality assessment

(2) Combination of different characterization tools at <u>single nanotube level</u>

Example: Raman / HRTEM (D01 and D57)

Single nanotube optics, HRTEM, STM with thermal transport / electrical transport/ mechanical properties ...

What's missing?

Improved probes of nanotube surface chemistry and structure, particularly at fractional monolayer coverages

Nanotube doping

. . .

- Nanotube electrical contacts
- Nanotube light emission
- Nanotube functionalization
- In-situ growth analysis and control

Other Characterization: Surface Chemistry, Composition

<u>XPS/UPS:</u>

- D22 Pichler at al. (E) Properties of functionalized SWCNTs (also by EELS etc.)
- D29 Tokura al. (E)
- SWCNTs (also by EELS, etc.) • XPS study of vertically aligned CNT films

Adsorbing Fluorescent Markers:

 D66 Nishikiori at al. (E)

 Characterization of surface structure of acid-treated nanofibers by fluorescent probe
 Other approaches exist, but this remains a critical area for future technique development

 Important Characterization/Analysis Theme in Posters: Atomic Defects in SWCNTs

<u>Tools:</u> Primarily electron microscopy (sometimes with micromanipulation) Theory/modeling

Excellent example of: Analysis below the level of nanotube chirality Importance of experiment/theory interaction for full understanding

[Invited papers by Y. Nakayama, K. Suenaga]

Atomic Defects in Nanotubes

Issues: Formation of defects

Modification: separation, diffusion, ...

Annealing behavior

<u>Properties:</u> Relative stabilities, pathways, barrier heights

Kotakoski et al. (D49)

Defects in Nanotubes (I)

- D49 Kotakoski et al. (T)
- D50 Kawai et al. (T)
- D51 Okada et al. (T)
- D52 Berber et al. (T)
- D53 Mori et al. (T)
- D54 Tien et al. (T)

•Kinetics of defects on CNT walls studied by Monte Carlo

- Diffusion barrier for monovacancy on CNT
- Energetics & electronic struct. of line defects in CNTs
- Atomic and electronic structure of divancies
- Energetics of plastic bending of carbon nanotubes
- Orientation dependence of vacancies in defective CNTs

Modified electronic/magnetic properties from vacancies

Defects in Nanotubes (II)

- D56 Bichara et al. (T)
- D58 Niwase et al. (T)
- D64 Choi et al. (T)
- D65 Krasheninnikov et al. (T)
- D72 Jeong et al. (T)

- Zeolite-grown SWCNTs are highly defective
- Defect engineering of graphene: radiation damage
- Stone-Wales barrier reduction in metallofullerenes
- Intrinsic and radiation-induced defects in CNTs
- Defect-derived localized states in semiconducting SWCNTs

Perspective: Defect Engineering

+ Defects can destroy desired properties of ideal crystals

+ Defects can also enhance properties of ideal crystals

- Modify and control electronic properties: Doping

- Modify and control mechanical properties:

Hardening

Nanostructure control (e.g., nanocoils)

General Carbon Nanotube Studies

Synthesis and Post-Synthesis Processing

CNT Interactions with their Environment

Biological Applications and Safety

Synthesis and Post-Synthesis Processing

- D25 Song et al. (E)
- D47 Irle et al. (T)
- D55 Hassanien et al. (E)
- D62 Krash et al. (E)
- D67 Okaziki et al. (E)
- D69 Jeong et al. (E)
- D70 Ota et al. (E)

- Selective removal of metallic SWCNTs by microwave rad.
- DFTB method for calculations of growth, reaction, properties
- Selective etching of metallic SWCNTs with H plasma
- Fabrication of products containing metallic SWCNTs
- MWCNTs, graphitic- and C₃N₄particles by dc arc discharge
- Alignment of carbon nanocoils by dielectrophoresis
- Preparation of twisted carbon nanotubes

Interactions of CNTs with their Environment

SWCTNs strong interactions with their environment, modifying their electronic, phononic, and physical structure

- D26 Lien et al. (T)
- D27 Petrov et al. (E)
- D28 Muramatsu et al. (E)
- D32 Krash et al. (T)
- D63 Jeong et al. (E)

- Electronic properties of a pair of narrow-gap SWCNTs
- Water-induced effects on electronic prop. of SWCNTs
- Pore structure and oxidation stability of DWCNTs
- Effects of external electric fields on finite SWCNTs
- Atomic and electronic structure of SWCNTs on Si(100) stepped surfaces

Biological Applications and Human Safety

Very significant emerging field (good and bad!) that is not highly representated at NT 06 – but to which we can definitely contribute

- D23 Haniu et al. (E)
- D30 Takeuchi et al. (E)
- D31 Grausova et al. (E)
- D35 Hwang et al. (E)

- Effect of subcutaneous implantation of CNTs in mice
- NaCl-catalyzed oxidation of MWCNTs
- CNTs a future material for bone tissue engineering
- Using magnetic carbon nanocapsules as support in synthesizing Cisplatin (anticancer drug)

