Pulmonary Toxicity of Single Walled Carbon Nanotubes

Anna Shvedova, PhD Robert Mercer, PhD Andrew Maynard, PhD Vincent Castranova, PhD

National Institute for Occupational Safety and Health Morgantown, West Virginia, USA

Background

Single Walled Carbon Nanotubes (SWCNT)

- A. Long tube-like configuration of carbon molecules
- **B.** Single layer of carbon atoms in a cylindrical arrangement
- C. Nanotube = 1.5 nm in diameter, up to 1 mm in length
- D. High tensile strength, high surface area, unique electronic properties, high adsorption capacity
- E. Used in electronics, structural materials, etc

Issue

- A. Potentially wide commercial applications
- B. Little information is available concerning the potential adverse effects of inhalation of SWCNT

Objective

- A. Characterize the pulmonary responses to SWCNT
- **B.** Determine the dose-dependence of the responses
- C. Determine the duration of responses post-exposure

Test Material

- A. SWCNT were produced by the high-pressure carbon monoxide process (HiPCO)
- B. Unpurified SWCNT contain 30% metal catalyst (ultrafine Fe, or Fe/Ni)
- C. Purified SWCNT acid treated; < 0.2 wt% metals
- D. Suspended material supplied by NASA

Methods

A. Exposure

- 1) Pharyngeal aspiration of mice
- 2) PBS or SWCNT (10, 20, or 40 μ g/mouse)
- 3) Sacrifice 1 60 days post-exposure

B. Endpoints

- 1) Damage BAL protein and LDH
- 2) Inflammation BAL cells and cytokines
- 3) Oxidant stress lung GSH
- 4) Histology particle deposition, inflammation, granulomas, and fibrosis

Post exposure, days

Post exposure, days

SWCNT Inflammatory Response 1Hour

H&E SWCNT 30 days

SWCNT Response 7 Days

Pharyngeal aspiration of 40ug SWCNT in C57BL/6 mice.

SEM of Granuloma in Alveolar Airspace

Carbon Nanotubes 7 days post aspiration, mouse 1mg/kg

Dissecting microscope

Size of SWCNT Deposits

TEM of SWCNT in Interstitium (3 days)

Connective Tissue Response in Alveolar Region (areas outside those containing SWCNT aggregates, 60 days)

Preparation of Au-SWCNT

10nm Colloidal Gold-Labeled SWCNT

Detection of Sub-Micron SWCNT by Silver Enhancement

Requires silverenhancement to detect

Visible without silver-enhancement

30 µm

Proximal Alveolar Region SWCNT Day 3

Silver-enhanced gold-labeled SWCNT, 40 ug aspiraton, perfusion fixed

Pleural AU-SWCNT 1 day

Silver Enhanced Dispersed Au-SWCNT

1 day post aspiration, 10 ug, perfusion fixed mouse

Silver Enhanced 10nm Gold (no SWCNT)

(1 day post aspiration, perfusion fixed mouse)

10 µm Alveolar Macrophage

Summary

- A. Nebulized SWCNT dispersed as aggregates and nanotubes
- B. Aspiration causes transient oxidant stress, damage and inflammation, peaking by 7 days post-exposure
- C. Histology visualizes aggregates in the terminal bronchials and proximal alveoli with no visible material in distal alveoli
- D. Size of aggregates doesn't change with time
- E. Rapid fibrosis begins in 7 days and progresses through 60 day postexposure
 - 1) Fibrosis in granulomatous lesions containing aggregates
 - 2) Diffuse interstitial fibrosis in distal alveolar walls with no visible SWCNT
- F. Used silver enhancement of gold-labeled SWCNT
 - 1) See aggregates in proximal alveoli and terminal bronchials
 - 2) See nanoropes in walls of distal alveoli

Conclusions

- A. See granulomatous lesions at deposition sites of aggregates.
- **B.** See interstitial fibrosis in sites of deposition of nanoropes.

Organ Gold Content After Gold-Labeled SWCNT Aspiration

