

Sivaram Arepalli¹, Edward Sosa¹, Pasha Nikolaev¹, William Holmes¹, Olga Gorelik¹, and Leonard Yowell²

¹ ERC Inc. / NASA - Johnson Space Center, Houston, TX ² NASA - Johnson Space Center, Houston, TX

NT06

June 18th-23rd 2006, Nagano, Japan

Why do we need material quality assessment? What do we have to know? How do we perform the characterization? How much time and money can we spend? How many times do we need to do? What else do we have to know about the production source, i.e. laser, arc, CVD, etc.?

Material Quality = Purity?

Why Do We Want to Know Nanotube Purity?

•Over the years, various manufacturers claimed purity anywhere from 50 to 90%. Do we trust these numbers? What are we buying?

•How consistent is NT material produced by the same manufacturer in different batches?

•What are implications of nanotube purity in applications?

•How does the purity affect stress transfer in composites, electrical and thermal conductivity, surface area, sidewall chemistry, dispersion properties, etc.?

What do We Really Like to Know?

<u>Morphology</u>	<u>Purity</u>	Dimensionality	Physical <u>Properties</u>	Chemical Interaction & <u>Modifications</u>
Physical Shape Texture Color/Shade/Tint Homogeneity Surface Features Fiber Types Impurity Features	Density Metal Impurity Carbon Impurity Other Impurities Residual Mass	Lengths Diameters Chirality Surface Area Pore Size	Thermal Electrical Mechanical Magnetic Optical	Dispersion Functionality Defects Exfoliation

How do We Perform Characterization?

Macroscopic

- Thermal Gravimetric Analysis (TGA)
- UV-Visible-Near Infrared (UV-Vis-NIR) Absorption
- NIR Fluorescence
- Inductively Coupled Plasma (ICP)
- Optical Microscopy
- Dynamic Light Scattering (DLS)
- X-ray Diffraction (XRD), SAXS, SANS
- Resistivity
- Surface Area(BET)
- Tensile Strength
- Thermal Conductivity

Microscopic

- Scanning Electron Microscopy (SEM)
- Energy Dispersive X-ray Analysis (EDX)
- Raman Spectroscopy
- X-ray Photoelectron Spectroscopy (XPS)

Nanoscopic

- Transmission
 Electron Microscopy (TEM)
- Atomic Force Microscopy (AFM)
- Scanning Tunneling Microscopy (STM)

Purity and Dispersion

Our goals for Quality Assessment*

- To be able to directly compare nanotube samples of different origin, purified by different techniques.
- To gather as much information as possible about specimen purity (nonnanotube carbon impurities and metal content), dispersability and homogeneity.
- <u>To minimize time and effort spent on characterization.</u>
- To optimize data collection to provide reliable assessment.

Available tools:

- Thermogravimetric analysis (TGA), (TA SDT 2960)
- Transmission electron microscopy (TEM) + EDS, (JEOL 2010 FX)
- Scanning electron microscopy (SEM) +EDS (Phillips XL40 FEG)
- Raman spectroscopy (Renishaw RM 1000)
- UV-Visible spectrometry (Perkin-Elmer Lambda 900)
- * Ref: "NASA-JSC Protocol"; Carbon, Vol. 42, pp. 1783-1791 (2004)

Mathebre How does the material vary with production source?

Production and Collection

Arc Discharge Method

Pulsed Laser Vaporization

Arc Production Conditions:

3.92%Ni:1%Y, Pressure:506 Torr, Voltage:38.2V, Current:101.5A, Electrode Distance:3 mm, Automated

Laser Production Conditions:

³⁄₄" diameter target, 1%Co:1%Ni, Pressure: 500T, Ar Flow Rate: 100 sccm, Pulse Separation: 50 ns , Power Density: 1.6J/cm², Oven Temperature: 1200 °C, Laser Sequence: Green-IR

Laser Run #171; Morphology

Filter

Inner Flow Tube

Laser Run #171; Purity by EDX

TGA Harvesting Characterization

* Indicates the percentage of material weight collected *

Raman Spectroscopy Harvesting Characterization

Laser Variability - Normailzed Spectra

Raman Spectroscopy Harvesting Characterization 1.24nm 1.33nm 1.46nm 1.10nm inner - collar collar sleeve sleeve Signal Intensity Signal Intensity -main — main filter — filter Raman Shift (cm⁻¹) Raman Shift (cm-1)

 $\omega_{\text{RBM}} = \alpha/d + b$, $\alpha = \text{constant} = 223.5 \text{ cm}^{-1} \cdot \text{nm}$ b = intertube interactions = 12.5 cm⁻¹

Laser Run #171; Purity and Dispersion by **UV-Vis-NIR Spectroscopy**

Filter

Laser Collection Variability Summary

MATERIAL

		Inner	Collar	Sleeve	Main	Filter
F	Residual Mass	6.45%	13.98%	12.21%	14.26%	10.45%
		<u>Min</u>	Min	Min	Min	Min
S	Thermal	458.6 °C	458.6 ° C	476.7 ° C	404.4 ° C	405.9 ° C
ËI.	Stability	<u>Max</u>	Max	<u>Max</u>	Max	<u>Max</u>
ER.	,	652.8 °C	559.5 ° C	682.9 ° C	439.0 ° C	431.5 ° C
Ы	Dispersion	7.962%	13.31%	4.276%	3.821%	2.193%
R	D/G Ratios	0.288	0.090	0.047	0.094	0.124
	D-Band Position	1285.45cm ⁻¹	1289.9cm ⁻¹	1287.87cm ⁻¹	1284.84cm ⁻¹	1283.17cm ⁻¹
Small Diameter %		8.02%	22.6%	8.17%	9.85%	27.5%

Conclusions

- Downstream SWCNT material tends to have lower thermal stability
- TGA spectral shape similar for main and filter SWCNT material. Inner tube material has half the residual mass compared to other materials.
- Downstream material is less crystalline (?) and more fluffy (TGA and UV-Vis-NIR)
- Spectral features in UV-Vis-NIR data is directly proportional to distance from target
- Percent Absorption change is inversely proportional to distance from target

- Harvested Arc Material deposited on the cathode, collarette, webs and chamber wall.
- Characterized using JSC Protocol for SEM, TGA, UV-Vis and Raman

Possible causes for the variation: 1. Over-coating of metals 2. Tube diameters

Variability Study - Comparison of Harvested Arc Material (Normalized)

Material deposited further away from electrodes have larger contribution of larger diameter tubes.

 $D_{web} > D_{wall} > D_{col} > D_{cat}$

G-band agrees with diameter fractions – webs and wall deposit have higher fraction of larger diameters.

UV-VIS Dispersion Study : JSC-A72.2 JSC Arc unpurified-Harvesting Study, 120 min. Sonication, 0.6665% Change After 1 Hour

0.4 — JSC-A72 1: 700-1000nm Area 49.65 0.35 JSC-A72 2: 700-1000nm Area 48.86 0.3 **u** 0.25 0.2 0.15 0.1 Collarette 0.05 ٥ 325 525 725 925 1125 1325 Wavelength(nm)

UV-VIS Dispersion Study : JSC-A72.4

UV-VIS Dispersion Study : JSC-A72.3

JSC Arc unpurified-Harvesting Study, 30 min. Sonication, 0.1114% Change After 1 Hour

UV-VIS Dispersion Study : JSC-A72.1 Arc unpurified, 15min Sonication, 1,595% Change After 1 Hour

Arc Collection Variability Summary

Arc Material:

Collection Region

		Cathode	Collarette	Webs	Wall Deposit
Properties	Residual Mass (ave)	46.95%	46.60%	33.82%	29.61%
	Thermal Stability (ave)	<u>Min</u> 458.8 ℃ <u>Max</u> 637.8 ℃	<u>Min</u> 474.9 ℃ <u>Max</u> 646.6 ℃	<u>Min</u> 356.4 ºC <u>Max</u> 416.2 ºC	<u>Min</u> 364.9 ℃ <u>Max</u> 418.8 ℃
	Dispersion	0.6665%	1.595%	1.265%	0.114%
	D/G Ratios	0.0337	0.1655	0.0873	0.0438
	Small Diameter % (Raman)	20.9%	8.87%	5.39%	4.97%

Conclusions

<u>TGA:</u>

Lower oxidation temps for material further from electrodes more likely due to some degree of over-coating.

Lower metal content observed inversely to distance from electrodes.

Raman:

D-band does not support TGA carbon impurity speculation.

RBM suggests smaller diameters more prevalent in cathode materials.

G-band may show more metallic features in cathode material, while more SC features in wall deposit.

<u>UV-Vis:</u>

Suppressed optical features support over-coating of tubes.

Stronger S22 transition in agreement with Raman results.

Thanks for Your Attention