Nature of Optical Transitions in Carbon Nanotubes and Population Analysis

A. Jorio, M. A. Pimenta and P. T. Araujo
Physics Department, UFMG, Belo Horizonte, Brazil.

S. K. Doorn
Chemistry Division, Los Alamos National Laboratory, USA

S. Maruyama
Dept. of Mechanical Engineering, University of Tokyo, Tokyo, JAPAN

M. S. Dresselhaus (MIT)

Y. Oyama, J. Jiang, R. Saito (Tohoku)
Outline

Introduction – Resonance Raman Scattering maps
The exciton and the band-to-band pictures in carbon nanotubes

Band model exciton model

PLE – Bachilo et al.
RRS – Fantini et al.
Rayleigh – Sfeir et al.
The Resonance Raman Scattering (RRS) Maps

Raman Intensity

Raman Intensity

Radia Breathing Mode

\[I(E_{\text{laser}}) \propto \frac{1}{(E_{\text{laser}} - E_{ii} - i\Gamma)(E_{\text{laser}} \pm E_{\text{ph}} - E_{ii} - i\Gamma)} \]

\[\omega_{\text{RBM}} = \frac{219}{d_t} + 15 \]

\[(E_{ii}, \omega_{\text{RBM}}) \rightarrow (n,m) \]

Fantini et al. PRL (2004)
The Resonance Raman Scattering (RRS) Maps

As grown Alcohol SWNTs

HiPco SWNTs + SDS (6,5)

CoMoCAT SWNTs + SDS (6,5)

Characterizing sample growth and...
...sample processing

CoMoCAT (Resasco)
SDS vs. DNA wrapping ...
by Fantini et al.

![Graphs and charts related to sample processing and CoMoCAT technology.](image-url)
The Kataura plot

The optical transition energies \(E_{ii} \) as a function of carbon nanotube diameter \(d_t \)

Proposed by H. Kataura in 1999, considering first neighbour \(\pi \)-only TB model
The deviations from a simple graphene zone folding picture

TB with curvature effect and σ-π hybridization + many-body effects

Simple tight binding

σ-π hybridization

Lattice distortion

As shown by the ratio problem...
The ratio problem for E_{22}^S and E_{11}^S

E_{22}^S / E_{11}^S smaller than 2!

For a linear dispersion
$E_{22}^S / E_{11}^S = 2$

Why do we have the ratio problem?
Why do we have the ration problem?

Optics without many-body effects

Optics with many-body effects

e-e attraction plus e-h repulsion gives rise to a net blueshift

How is the big picture?
The big picture: E_{ii}s obey a scaling law

$E_{11}(d_t) = E_{22}(d_t/2)$

E_{11}^S and E_{22}^S follow a single scaling law when plotted as a function of p/d_t

$$
\Delta E_{ii} = \gamma_0 a_{c-c} \frac{g}{4} \frac{2p}{3d_t} \log \frac{2\Lambda}{\frac{2p}{3d_t}}
$$

$PRL\ 2004$

$p = 1, 3, 3', 1' \ldots \ E_{11}^{II}, E_{22}^{II}, E_{11}^{III}, E_{22}^{III}, E_{11}^{IV}, E_{22}^{IV} \ldots$
All the physics is for $0.7 < d_t < 1.3 \text{nm}$ and $0.6 < E_{ii} < 2.7 \text{eV}$

What about $d_t > 1.3 \text{ nm}$?
What about higher E_{ii}?
The RRS of alcohol SWNTs
RRS on alcohol CVD SWNTs

Measurements over a broad energy (1.26 to 2.71 eV) and diameter (0.7 to 2.3 nm) range

Now we have to analyse the E_{ii} and ω_{RBM}!
Good agreement with published E_{22}^S, E_{33}^S and E_{44}^S

Rayleigh by Sfeir et al.

<table>
<thead>
<tr>
<th>(n,m)</th>
<th>mod$(n-m, 3)$</th>
<th>d_s (nm)</th>
<th>θ (°)</th>
<th>Transition</th>
<th>E_S (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16,11)</td>
<td>2</td>
<td>1.83</td>
<td>23.9</td>
<td>S_{33}</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S_{44}</td>
<td>2.30</td>
</tr>
<tr>
<td>(16,10)</td>
<td>2</td>
<td>1.71</td>
<td>23.4</td>
<td>S_{33}</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S_{44}</td>
<td>2.44</td>
</tr>
<tr>
<td>(13,12)</td>
<td>1</td>
<td>1.70</td>
<td>28.7</td>
<td>S_{33}</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S_{44}</td>
<td>2.52</td>
</tr>
<tr>
<td>(13,11)</td>
<td>2</td>
<td>1.63</td>
<td>27.2</td>
<td>S_{33}</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S_{44}</td>
<td>2.56</td>
</tr>
<tr>
<td>(10,10)</td>
<td>0</td>
<td>1.38</td>
<td>30</td>
<td>M_{11}</td>
<td>1.03</td>
</tr>
<tr>
<td>(11,6)</td>
<td>0</td>
<td>1.30</td>
<td>24.8</td>
<td>$M_{11(1)}$</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$M_{11(2)}$</td>
<td>2.02</td>
</tr>
<tr>
<td>(20,14)</td>
<td>0</td>
<td>2.35</td>
<td>24.2</td>
<td>$M_{22(1)}$</td>
<td>2.22</td>
</tr>
</tbody>
</table>

The anomalous scaling law for the higher optical transitions

\[p = l^l \tilde{5}^3 \tilde{4}^2 \cdots \{01, E_2^{II}, E_2^{III}, E_2^{IV}, E_3^{III}, E_3^{IV}, \cdots \} \]
The difference between the scaling laws

The two photons experiment...

Maultzsch et al. PRB72, 24402(R) (2005)
Ma et al. JPCB109, 15671 (2005)
Band-to-band vs excitons?

Exciton binding energy: $E_b = -0.305/d_t$ (eV)

E_{11}^S and E_{22}^S Excitons

E_{33}^S and E_{44}^S free e-h pairs?

Kane and Mele

$$\Delta E_{ii} = \gamma_0 a_c c^g \frac{2p}{43d_t} \log \frac{2\Lambda}{3d_t}$$
Measuring the E_b energy

Excitonic binding energy:

$E_{b11} = -0.318/d_t \, (eV)$

$E_{b22} = -0.298/d_t \, (eV)$
Chirality dependence of E_{ii}

Similar to prediction by the extended tight binding (ETB) within experimental accuracy ($\sim \pm 30\text{meV}$)
Summary

1 – Optics is a well established tool to characterize single wall carbon nanotube samples.

2 – E_{11}^S and $E_{22}^S \rightarrow$ excitons

3 – E_{33}^S and $E_{44}^S \rightarrow$ band-to-band?

4 – Exciton binding energy:
$$E_b = -0.305/d_t$$
Acknowledgement

• M.A. Pimenta, C. Fantini, P.T. Araujo, I.O. Maciel, L. G. Cancado (UFMG) – RSS
• H.B. Ribeiro and F. Plentz (UFMG) – (PLE)
• L.O. Ladeira, R. G. Lacerda, A. Ferlauto (UFMG) – (Samples)
• A. P. Santos and C. A. Furtado (CDTN) – (Chemistry)
• S. K. Doorn (LANL) – (RRS)
• M. S. Dresselhaus, G. Dresselhaus, S. G. Chou, G. G. Samsonidze (MIT) – (exp and theory)
• R. Saito, J. Jiang, A. Grueneis, N. Kobayashi, Y. Oyama (Tohoku) – (theory)
• H. Chacham (UFMG), R. B. Capaz (UFRJ), S. G. Louie (Berkeley) – (Theory)
• S. Maruyama (TU), M. Strano (UI), D. Resasco (UO). A.M. Rao – (samples)