Edge state and unconventional magnetism of nanographene/nanographite

TOSHIAKI ENOKI

Dept. of Chem. Tokyo Institute of Technology

> NT06, Nagano June 18-23, 2006

Journal of

nanographite π -electron system with open edges

fullerenes carbon nanotubes closed π-electron system

nanographite (nanographene)

localized π -spins

enhanced magnetism

non-Kékule str. nonbonding π -state (s=172) Yamabe et al. Fujita et al.

zigzag edge

armchair edge

ferromagnetic

edge state nonbonding π-state

large density of states (DOS) spin paramagnetism

contrast to bulk graphite

extra π -bond connected to the carbon atom at a zigzag edge

edge states with localized spins appear at -2/3 < k < 2/3

Klein edge

K. Kusakabe, et al. 2001

combination of Fujita's and Klein's edges

completely localized edge state appears at $E_{\rm F}$

K. Kusakabe, et al. 2001

nano-magnetism

Kusakabe et al.

Carbon-only ferromagnet

spatially maldistributed ferromagnetism

Nanographene

single nanographene sheet
 nanodiamond
 electrophoretic technique + heat-treatment
nanographene ribbon
resonance Raman experiments
electronic structure of edge state
 at edges hydrogen-terminated

Controllable nanoscopic magnetism

gas-adsorption induced magnetic switch

single nanographene sheet

SEM and AFM images of diamond nanoparticles.

nanodiamond particles (ca. 5 nm) deposited by electrophoretic technique spherical shape with particle sizes larger than those observed by TEM absorbed solvent molecules on the surface of particles

nanographene and STM analysis

STM images after heat-treatment at 1600 °C

nanographene > flat single layer sheet mean in-plane size of 10nm

nanographene on HOPG substrate and STM Analysis

cross-sectional profile

nanographene ribbon observed by resonance Raman experiments

AFM image of single nanographene ribbon

single sheet of nanographene ribbon at a step edge

Resonance Raman experiments with polarized light

small nanographene ribbon can be easily heated by laser beam

edge states observed by STM/STS and analyzed by tight-binding calculations

zigzag edge electronic state of graphene edges 150 (NYU) experimental evidence of edge edge state state dl/dVs 31 Zigzag 0 0.5 0 -0.5 Armchair Vs (V) armchair edge Armchair 200dl/dV (nA/V) π* Armchair 0 -0.5 0.5 0 Vs (V)

zigzag edge: short and defective, energetically unstable

(a)

3 zigzag carbon sites

finite length zigzag edge

(b)

localized edge state

tight binding calculation

edge state

electron confinement effect in zigzag edges

edge-state-absent site at zigzag edge (small local density of states (LDOS))

magnetic switch of nanographite

Activated carbon fibers (ACFs)

3D random network of nanographite domains

edge-state spins

adsorption of guest molecules

Gas physisorption $(O_2, N_2, H_2O \text{ etc.})$ in ACF nanopore space

guest molecules -> effective pressure inter-nanographene layer distance reduced What effect on magnetism ? nanographite + H₂O

Comparison between H₂O adsorption isotherm and magnetic susceptibility

physisorption isotherm
 adsorption threshold
 at P/P₀ ~ 0.5
 (hydrophobic pore)

magnetic susceptibility
 drops at P/P_0 > 0.5

ON/OFF magnetic switch

effective pressure induced by H₂O guests

T.Suzuki et al., Carbon(1988)

change in magnetism (high spin - low spin transition)

inter-graphene interaction $J \sim t^2/U$ enhanced effective magnetic moment reduced

controllable nanoscopic magnetism in nanographite

Analysis by the Hubbard type model

intralayer transfer int.: t
on-site Coulomb int.: U

closed shell electron case:

increase of interactions→ increase of total magnetic moment

open shell electron case:

increase of interactions→ decrease of total magnetic moment

→ in agreement with experiments

K. Harigaya, J. Phys.: Condens. Matter <u>13</u>, 1295 (2001);
K. Harigaya, Chem. Phys. Lett. <u>340</u>, 123 (2001);
K. Harigaya and T. Enoki, Chem. Phys. Lett. <u>351</u>, 128 (2002).

Ar adsorption in micropores

magnetization affected well above the boiling point

Ar guest atoms (diamagnetic) adsorbed well above the boiling point

zero-field muon spin relaxation (ZF- μ SR) in Ar

due to the dipolar field

Summary

Nanographene/Nanographite

importance of geometry of edges

non-bonding π -electron state (edge state)

STM/STS observations for well defined edges

nanoscopic magnetism

spin glass magnetic switch gas sensor

Nanographene-based molecular devices

zigzag edge armchair edge

electron beam Ithography magnetic line

chemical modifications

CH itinerant magnetism
CH₂ localized magnetism
CF nonmagnetic
C=O conducting line

future promising molecular devices (compared with nanotubes)

Contributors

Y. Kobayashi, K. Takahara, N. Kawatsu, M. Affoune, B. L. V. Prasad, K. Takai, H. Sato, K. Fukui, *Tokyo Inst. of Tech.*

H. Harigaya, Nanotechnology Res. Inst., AIST

Y. Kaburagi, Y. Hishiyama, Musashi Inst. of Technology

K. Kusakabe, Osaka University

L. G. Cancado, B. R. A. Neves, A. Jorio, M. A. Pimenta, Univ. Fed. Minas Gerais

M. S. Dresselhaus, Massachusetts Inst. of Tech.

R. Saito, Tohoku Univ.

H. Suzuki, I. Watanabe, Riken

F. Pratt, Rutherford Appleton Laboratory

R. Kobori, S. Maruyama, K. Kaneko, Chiba University

Nanographene ribbon

magnetic nanocarbons with Klein and Fujita edges

nanocarbon-based ferromagnetism

F(or H)-terminated edge graphite-diamond interface

F

K. Kusakabe, et al. 2001

triangular lattice image on a particle

★same A-B stacking mode with HOPG substrate
★small irregularity

Electronic properties

•graphene sheet-substrate interaction

interlayer distance 0.35-0.37 nm

interlayer resonance integral $\gamma_1 = 0.20 - 0.29 eV$ (bulk $\gamma_1 = 0.39 eV$)

+quantum size effect

 $N \sim 3000$ largest polycyclic aromatic molecule band width $W = 6\gamma_0$ in-plane resonance integral $\gamma_0 = 3.16$ eV energy discreteness $N/W \sim 75$ K

+edge state effect

scanning tunneling spectroscopy experiment

dispersed LDOS near the defect point at which an armchair line is added

two zigzag edge atoms added to armchair edge

 $(4.3 \times 4.3 \text{ nm}^2)$

A

increase by two armchair lines

(4.5×4.5 nm²)

B

arrays of bright spots near defects run in different directions

calculated LDOS near the defect point

the difference comes from one extra-carbon atom

effect of inter-graphene layer interaction on the edge state

2D LDOS mapping

effect of various physisorbed molecules on nanomagntism

magnetic switch effect created at the solid-liquid transition of Br_2 guests

magnetoresitance with paramgnetic O_2 molecules

O_2 molecules S=1

wave function overlap with graphitic π -electron strong exchange int.

chemical bond with S=0 singlet state

physisorbed weak dipole-dipole int.

exchange int. between O_2 spins and edge-state spins

internal field from O₂ molecules ~20 K

Zero field muon spin relaxation (μ SR) in Ar atmosphere

Ar pressure: ~ 1 atm at 87 K (B.P.)

•: 84 K ⊽: 95 K △: 294 K

Freezing P. 84 K Boiling p. 87 K

increase of the static component is prominent below the F.P. of Ar

freezing of Ar condensed in the nanopores modification of the magnetism of the edge-state spins

nano-graphite network

☆Coulomb blockade effect
 ☆spin-glass
 Activated carbon fibers
 3D nano-graphite network

heat treatment

insulator-metal transition

Heat-treatment effect on conductivity

semiconductive region conductivity of ACFs and iodine-doped ACFs

Coulomb gap variable-range hopping conduction

e² Er

charging effect

$$\sigma = \sigma_0 \exp\left[(T_0 / T)^{1/2} \right]$$
$$T_0 = \frac{6e^2}{\pi k_B} \frac{1}{4\pi\varepsilon} \frac{1}{\alpha^{-1}}$$
$$\varepsilon: \text{ dielectric constant}$$
$$\alpha^{-1}: \text{ localization length}$$

Heat-treatment effect on magnetic susceptibility

HTT < P_c Curie-Weiss behavior with localized spins and negative Weiss temperature

HTT > P_c less temp. dependent enhanced diamagnetism

Magnetism around the percolation threshold region

antiferromagnetic ordering? negative Weiss temperature

Field cooling effect

large field cooling effect around the MI threshold

exchange interaction $|\sqrt{\langle \Delta J^2 \rangle}/\langle J \rangle| \sim 0.8$ random distribution

ACFs

3D random network of nanographite domains
nanopores
edge-state spins

Huge helium condensation in micropores

Activated carbon fibers (ACF) 3D random network of nanographites

nanographite; metallic domain

3-4 graphene sheets with in-plane size 2-3nm

 localized spins of edge origin → several spins / nanographite
 micropores ~ 1-2nm, networked

(Helium in micropores) ACF; specific surface areas $\sim 3000 \text{ m}^2/\text{g}$ 🛪 gas adsorption He, Ne, Ar, H2, N2, O2 * ESR spin-lattice relaxation saturation technique edge-localized spins probe for guest-host int. ħω spin system T_1 lattice

effective pressure in micropores at room temp.

large condensation of guest gaseous species

extremely large condensation ~ 10⁴ times

He atom, exceptional nature

ESR saturation curves with guest gases

independent of internal degree of freedom rotation / vibration

spin-lattice relaxation rate T_1^{-1} is accelerated by gas uptake remarkable enhancement in He atmosphere spin-lattice relaxation rate T_1^{-1}

1/T₁=nσυ
n: density of helium atoms
σ: cross section related to the spin-flop process
υ: velocity of an He atom

$$\sqrt{\langle v^2 \rangle} = \sqrt{\frac{3RT}{M}}$$
$$1/T_1 \sim \sqrt{T}$$

 $\frac{1}{T_1} = \frac{6.05}{9(2\pi)^{1/2}h^4} n M^{3/2} \frac{p}{\Delta E} \frac{(e^2 IJ)^4}{R_0^6} w(k_BT)^{1/2}$ *M*: mass of He atom, *R*o: min.dist.(He atom and edge spin) λ : spin-orbit int. of carbon p state, D: difference (gr. and ex. states of C) ΔE : difference (¹P and ¹S states of He atom)

 $p = \lambda / \Delta$ $I = \int \Psi_{1s} \Psi_{2pz} dr$ $J = \int \Psi_{2s} \Psi_{2pz} dr$ Ψ : He wave function

helium atoms in activated carbon fibers \odot extremely large condensation at room temperature \odot remarkable acceleration of T_1^{-1}

He atom in ultra-micropore

enhanced interaction He-nanographite

nano-graphite π -electron system with open edges

fullerenes carbon nanotubes closed π-electron system

Nanographene ribbon

combination of Fujita's and Klein's edges

completely localized edge state appears at $E_{\rm F}$

K. Kusakabe, et al. 2001

nano-magnetism

Klein edge π-bond connected to the carbon atom at a zigzag edge

edge states with localized spins appear at -2/3 ≦k< 2/3

K. Kusakabe, et al. 2001

magnetic nanocarbons with Klein and Fujita edges

nanocarbon-based ferromagnetism

F(or H)-terminated edge graphite-diamond interface

K. Kusakabe, et al. 2001

Electron wave diffractions by STM

wave function diffraction patterns observed by STM theoretical characterization

Variations in diffraction period

tilted with respect to the substrate

potential gradient on the graphene plane

free electron model

$$\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + V_{\text{well}}(x) - F \cdot y\right]\psi(x, y) = E\psi(x, y)$$

linear potential

Electron density by the k p model

Hamiltonian around K-point

 $H = \begin{pmatrix} -F \cdot y & -i\gamma \frac{\partial}{\partial x} - \gamma \frac{\partial}{\partial y} \\ -i\gamma \frac{\partial}{\partial x} + \gamma \frac{\partial}{\partial y} & -F \cdot y \end{pmatrix}$

Solution with the infinite well

$$\Psi = 2A \left(\begin{array}{c} \sin\left(\frac{E_n x}{\gamma}\right) \sin\left[\frac{1}{\gamma} \left(\tilde{E}y + \frac{1}{2}Fy^2\right)\right] \\ -i\cos\left(\frac{E_n x}{\gamma}\right) \cos\left[\frac{1}{\gamma} \left(\tilde{E}y + \frac{1}{2}Fy^2\right)\right] \end{array} \right)$$

linear potential 13 20.5

X

electron density at the A-sublattice $|\psi_{A}(\mathbf{R}_{A})|^{2} = 4A^{2}\sin^{2}\left(\frac{n\pi x}{d}\right)$ $\times \left\{1 + \cos[(\mathbf{K} - \mathbf{K'}) \cdot \mathbf{R}_{A} - \eta]\sin\left[\frac{2}{\gamma}\left(\tilde{E}y + \frac{1}{2}Fy^{2}\right)\right]\right\}$

■ 1.5-2
□ 1−1.5
■ 0.5-1
■ 0-0.5

0.5

envelope function as a long range component

Local density of states

 $\sin^2\left(\frac{n\pi x}{d}\right)\left[\operatorname{const.}+\sin\left(\frac{Fy^2}{\gamma}-\frac{2n\pi}{d}y\right)\right]$

-0.5

Contributors

Y. Kobayashi, A. M. Affoune, B. L. V. Prasad, J. Ravier, N. Kawatsu, Y. Shibayama, O. E. Andersson, A. Nakayama, K. Takai, H. Sato Tokyo Institute of Technology K. Sugihara Nihon University M. Endo Shinshu University R. Kobori, S. Maruyama, K. Kaneko Chiba University H. Harigaya Nanotechnology Research Institute, AIST Y. Kaburagi, Y. Hishiyama Musashi Institute of Technology

He pressure dependence of spin-lattice relaxation rate at room temperature

enhancement of T_1^{-1} collisional process of He atom

Present talk

Nano-graphite

heat treatment of nano-diamond at 1600°C
 electrophoretic technique
 single nano-graphene sheet
 relectronic structure

Nano-graphite network activated carbon fibers (ACF) ☆ Coulomb blockade effect ☆ spin-glass

Controllable nanoscopic magnetism

water-adsorption induced magnetic switch